graphdoc.train.doc_generator_trainer module
- class graphdoc.train.doc_generator_trainer.DocGeneratorTrainer(prompt: DocGeneratorPrompt, optimizer_type: str, optimizer_kwargs: Dict[str, Any], mlflow_model_name: str, mlflow_experiment_name: str, mlflow_tracking_uri: str, trainset: List[Example], evalset: List[Example])[source]
Bases:
SinglePromptTrainer
- __init__(prompt: DocGeneratorPrompt, optimizer_type: str, optimizer_kwargs: Dict[str, Any], mlflow_model_name: str, mlflow_experiment_name: str, mlflow_tracking_uri: str, trainset: List[Example], evalset: List[Example])[source]
Initialize the DocGeneratorTrainer.
- Parameters:
prompt (DocGeneratorPrompt) – The prompt to train.
optimizer_type (str) – The type of optimizer to use.
optimizer_kwargs (Dict[str, Any]) – The keyword arguments for the optimizer.
mlflow_model_name (str) – The name of the model in mlflow.
mlflow_experiment_name (str) – The name of the experiment in mlflow.
mlflow_tracking_uri (str) – The uri of the mlflow tracking server.
trainset (List[dspy.Example]) – The training set.
evalset (List[dspy.Example]) – The evaluation set.
- _calculate_average_score(evaluation: dict) float [source]
Given a dictionary of evaluation results, calculate the average score.
- evaluation_metrics(base_evaluation: Dict[str, Any], optimized_evaluation: Dict[str, Any]) None [source]
Log evaluation metrics to mlflow.
- evaluate_training(base_model, optimized_model) Tuple[Dict[str, Any], Dict[str, Any]] [source]
Evaluate the training of the model. Comparing the base and optimized models.
- Parameters:
base_model (Any) – The base model.
optimized_model (Any) – The optimized model.